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Abstract 

Software development environments of the fu- 
ture will be characterized by extensive reuse of 
previous work. This paper addresses the issue 
of reusability in the context in which design is 
achieved by the transformational development of 
formal specifications into efficient implementa- 
tions. It,explores how an implementation of a 
modified specification can be realized by replay- 
ing the transformational derivation of the original 
and modifying it as required by changes made 
to the specification. Our approa.ch is to struc- 
ture derivations using the notion of tactics, and 
record derivation histories as an execution trace 
of the application of tactics. One key idea is 
that tactics are compositional: higher level tac- 
tics are constructed from more rudimentary using 
defined control primitives. This is similar to the 
approach used in LCF[l2] and NuPR.L[l, 8j. 

Given such a derivation history and a modi- 
fied specifica.tion, the correspondence problem 
[21,20] a.ddresses how during replay a correspon- 
dence between program parts of the origina.l and 
modified program is established. 
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Our approach uses a combination of name associ- 
ation, structural properties, and associating com- 
ponents to one another by intensional descrip- 
tions of objects defined in the transformations 
themselves. 

An implementation of a rudimentary replay 
mechanism for our interactive development. sys- 
tem is described. For example with the system 
we can first derive a program from a specification 
that computes some basic statistics such as mean, 
variance, frequency data, etc. The derivation is 
about 15 steps; it involves deriving an efficient 
means of computing frequency data, combining 
loops and selecting data structures. We can then 
modify the specification by a.dding the ability to 
compute the maximum or mode and replay the 
steps of the previous derivation. 

1 Introduction 

We are addressing the issue of reusability in the 
context in which software design is achieved by a 
transformational development of a. f0rma.l specifi- 
cation of the problem into a.n efficient implemen- 
tation. This paper explores how a specification 
derived as a modification of a.n etist.ing design 
can be realized by replaying the transformational 
derivation of the original and modifying it as re- 
quired by changes made to the specification. We 
believe tools to support such incremental reuse of 
designs will become an essential, integral part of 
software development environments of the future. 

Reuse of the product, or component reuse is cru- 
cial to bottom-up programming. R.eusable com- 
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ponents, such as user interface packa,ges, mathe- 
matical subroutine libraries, graphics standards, 
UNIX utilities, database systems etc., provide 
a powerful set of primitives that define a vir- 
tual machine base from which applications can 
be constructed. Component reuse can be en- 
hanced by improved programming langua,ge sup- 
port and improved programming environments. 
The need for improved programming language 
support is exemplified by the lack of d;ata ab- 
straction available in current languages. To use 
a scientific subroutine package that manipulates 
matrices requires agreement of the representation 
of matrices in both the package and the appli- 
cation. Providing an abstraction mechanism is 
insufficient unless it supports conversion between 
differing representa.tions. An example of environ- 
mental support needed for component reuse is an 
indexing and retrieval system to locate relevant 
components. 

Reuse is emerging as an important means of en- 
hancing software productivity. It is wor,thwhile 
to distinguish the reuse of the product of a soft- 
ware development effort, i.e. code, from reuse 
of the knowledge utilized in the generation of the 
product. 

It has been frequently observed that much of the 
knowledge used to create a component does not 
appear explicitly in the component and often not 
in its accompanying documentation. This knowl- 
edge is applied in ma.king design decisions, such 
as choice of problem decomposition, data repre- 
sentation, and algorithm choice. It is claimed 
that loss of this information contributes to the 
high cost of maintenance. Reusing this knowl- 
edge is design reuse. To achieve design reuse, 
the issue of capturing and representing designs 
must be faced. 

The basis for design capture we consider is to 
formalize software development within a trans- 
formational framework. In this model specifi- 
cations are written in formal specification lan- 
guage. Implementations are derived from specifi- 
cations by application of consistency-preserving 
transformations to an annotated abstract syn- 
tax tree representation. In our model this pro- 
cess is semi-automatic; transformations are ap- 

plied automatically and manually. At a given 
point in the derivation many transformations are 
potentially applicable. Implementors express de- 
sign decisions by selecting one of the many pos- 
sible transformations applicable at each step of 
a derivation. Recording their selections creates a 
design record which captures this information. 

The transformational approach applied to soft- 
ware development has been extensively studied 
[lo, 17,27,28]. P owerful, generic techniques such 
as data refinement, finite differencing, loop com- 
bining, inversion, algorithm design, etc. have 
been developed. The field also benefits from 
related work in compiler optimization, software 
specification, theorem proving, and programming 
language theory and practice. 

Program tra.nsformation systems are a promis- 
ing but not-well developed technology. Existing 
systems have focussed on deriving implementa- 
tions for medium-scale combinatorial computing 
problems [26, 91. Ongoing work at Kestrel Insti- 
tute has led to the development of a transforma- 
tional syst,em, called h’lDS[SO, 311 on which our 
replay work is based. Using the system we have 
been able to carry out derivations that carry non- 
trivial examples through many semantic levels 
and apply a wide range of design and optimiza- 
tion techniques. For example in one derivation we 
derive from a high-level specification of a topo- 
logical sort a LISP implementation which is as ef- 
ficient as any hand-coded version [5]. The deriva- 
tion is over 40 steps long where a step involves 
such diverse activity as inverting maps, com- 
puting containment relations among set-theoretic 
data structures, simplifying expressions, combin- 
ing loops, and selecting data structures. 

The reuse problem in this context is to capture 
the design decisions expressed as the manual se- 
lection of transformation rules, so that these de- 
cisions can be replayed on a specification simi- 
lar to the original. In a conventional SDE de- 
velopers rely on a very tight loop in which they 
execute, modify and re-execute programs. In a 
transformation environment where compilation is 
replaced by semi-automated transformation, that 
loop is no longer tight. One use of replay is to 
tighten the loop, by replaying the transforma- 
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tions of the original derivation to the modified 
specification. Within the transformational model 
maintenance is done by modifying specifications 
and rederiving an implementation. Thus replay 
is essential to this attractive approach to software 
maintenance. 

The transformational methodology supports de- 
sign reuse in two interesting ways. First the cre- 
ation of transformations and tactics formalizes 
general design knowledge in a highly reusable 
way. Second replay reuses design decisions made 
for related specifications. 

The availability of a mature transformational sys- 
tem such as KIDS has proved invaluable for ex- 
perimentation with replay. Conversely everyday 
use of KIDS has motivated the creation of a re- 
play capability. 

In this paper we report progress in the following 
areas: 

l An approach to representing a design history 
was developed. The approach is to struc- 
ture the derivation system using the notion 
of tactics, and record derivation histories as 
an execution trace of the a.pplication of tac- 
tics. One key idea is that tactics are compo- 
sitional: higher level tactics are constructed 
from more rudimentary using defined control 
primitives. This is similar to the a.pproach 
used in LCF[l!, IS] and NuPRL[l, 81. 

l An approach to the correspondence problem 
is described [21, 201. The correspondence 
problem addresses how during replay a cor- 
respondence between program parts of the 
original and modified program is established 
Our approach uses a combination of name 
association, structural properties, and asso- 
ciating components to one another by de- 
scriptions of objects defined in the transfor- 
mations themselves. 

l An implementation of a rudimentary deriva- 
tion management and replay mechanism for 
KIDS is described. Using the system we 
were able to perform a number of interesting 
rederivations. We have also built up a set of 

tools for derivation management, induding 
the ability to store and reload derivations, 
browse derivations, highlight changes to pro- 
gram text, etc. 

2 Approach 

2.1 Recording Derivations 

2.1.1 Representation of the Design 

The first important technical problem faced in 
this work is the representation of the design his- 
tory to be used as the basis for the replay mech- 
anism. The process of development has been de- 
scribed as starting with a specifica.tion and apply- 
ing a 1inea.r sequence transformations to yield an 
implem’ent~a.tion. However just recording the lin- 
ear sequence of development steps is inadequate. 
An analogy with mathematical proofs is reveal- 
ing. Formally a mathematical proof is also just a 
linear sequence of formulas obtained by a,pplying 
inference rules. This is an appropriate view for 
providing a, simple meta-theory (e.g. to prove the 
soundness of the system), but for little else. Just 
as a mathematical proof has structure (lemmas, 
case analysis, formation of induction hypothesis, 
reformula.tion, etc.) and is constructed and ex- 
plained in terms of that structure, a similar, but 
formal, structure must be devised for transfor- 
mational developments. 

What kinds of structures do we observe in soft- 
ware developments tha.t must be formalized? We 
survey a few here to motivate our solution. 

l One common structure is the virtual ma- 
chine model. Here the specification is ex- 
pressed in terms of an abstract language 
and then mapped in phases to successively 
lower-level virtual machine or language lev- 
els. Compilers are often constructed along 
this paradigm. The source language is at 
this highest abstract level. In the first phase 
this may be ma.pped to retargetable inter- 
mediate code, at a lower abstract level, and 
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then in a second phase to assembly lan- 
guage. Traditional compilers rarely involve 
more than two phases. Boyle’s [6] Lisp to 
Fortran transformation system goes ,through 
7 phases, each mapping to a different virtual 
machine level. 

l A second common structure is that of step- 
wise problem decomposition. A problem is 
decomposed into components and the imple- 
mentation of each of the components pro- 
ceeds independently. 

l A third is the exhaustive application of a set 
rewriting rules. This is typical of routine 
simplification steps or steps that rewrite the 
program into a normal form. It is common to 
apply this strategy in conjunction with the 
first. Each phase mapping between language 
levels is the exhaustive application of a set 
of rewriting rules. 

l A fourth structure is that of case analysis. 
This is of course used to express strategies 
which are conditioned on the form of the 
specification or other information about the 
specification supplied to the system. 

This is a representative but not exhaustive list 
of high-level development steps found in systems 
that formally map specifications into implemen- 
tations. Observe that these high-level develop- 
ment steps are compositions of more elemental 
steps and that they are expressible in terms of 
common control structures found in ordinary pro- 
gramming such as conditional, sequential com- 
position, parallel composition and iteration. For 
example, a problem decomposition step is the se- 
quential composition of a step which divides the 
problem in sub-problems, and a step consisting of 
the parallel composition of steps that solve the 
subproblems. Parallel decomposition does not 
impose a temporal order on development steps 
when no logical dependency exists. 

This suggests a straight-forward approach to the 
problem of structuring derivations. The develop- 
ment system is constructed from a set of prim- 
itive operators, using composition mechanisms 
such as the ones described above. The resulting 
composite operators are called tacGs. 

This is the approa.ch taken in LCF and NuPrl, 
systems aimed at the construction of mathemat- 
ical proofs, not programs. It is also the approach 
taken by Wile [34] The recorded deriva.tion is sim- 
ply a trace of the execution of the tactics. This is 
a direct implementation of the notion of process 
programming [25] in a transformational context. 

A different approach can be based on AI-style 
planning theory [ll]. H ere the description of the 
development step is given in terms of a goal- a 
declaratively stated postcondition that describes 
properties of the intended result of the step. For 
example, a step which transforms code into a 
normal form would be expressed by a declara- 
tive description of the form to be achieved. In 
addition to a goal structure, there are methods, 
which are operations that may be used to achieve 
a goal. It becomes the task of the system to syn- 
thesize a meta-program of methods whose result 
achieves the goal. The planning approach is a 
weak method because synthesizing plans is a dif- 
ficult problem, and because declarative specifica- 
tion of post-conditions is often unwieldy. 

2.1.2 An Elementary Tactic Language 

This section describes an elementary tactic lan- 
guage sufficient to illustrate the interaction of the 
replay mechanism and the tactic language. A full 
tactic language is under development. 

The tactic language is a control language. The 
computation responsible for transforming pro- 
grams lies within primitive tactics written in 
some other language, which in our case is REFINE 
[32] Primitive tactics are represented by REFINE 
procedures which are called by the tactic lan- 
guage interpreter. The form of a primitive tactic 
is: 

procedure-name (parameter-list ) 
[ returns identifier-list ] 

The identifier-list, and parameter-list are each 
lists, separated by commas, of an identifier fol- 
lowed by a colon followed by a type expres- 
sion. The procedure is called supplying actual 
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parameters, which generally are nodes of the ab- 
stract syntax tree (AST) representing the pro- 
gram. The procedure transforms the program as 
a side-effect. It returns a list of values which are 
then bound to the variables appearing in iden- 
tifier list following the keyword returns. These 
variables are called tactic variables. It also re- 
turns an indication of whether the tactic suc- 
ceeded or failed. 

The tactic variables appearing in the identifier 
list must be declared in a containing tactic called 
an abstraction tactic. An abstraction tactic al- 
lows the construction of a tactic with a name, 
formal parameters, local variables and a body. 
These tactics have the form: 

tactic-name (parameter-list) = 
let identifier-list in tactic 

ret urns identifier-list 

An abstraction tactic is invoked the same way 
as a primitive tactic. The formal parameters are 
bound to the actual values, the local tactic vari- 
ables are allocated and the tactic following the 
keyword in is executed. The tactic fails if the 
tactic following the keyword in fails. 

Primitive tactics are composed using control 
primitives. The most elementary is sequen- 
tial composition. This is simply denoted as 
tacticl;tactic2;. . . ; tactic,. It represents the tac- 
tic which executes each tactic sequentially. This 
tactic fails if any of its sub-tactics fail. 

The parallel execution of tactics is denoted 
tacticllltactic2lj . . . /Itactic,,. It represents the 
tactic which executes each tactic once in any or- 
der or conceptually at least, in parallel. Parallel 
composition is used when there is no logical de- 
pendence among the tactics, and so no temporal 
order on their execution should be specified. This 
tactic fails if any of its sub-tactics fail. 

The conditional tactic has the form 

if condition then tactic 
elseif condition . . . else tactic 

The condition must be a function call which re- 
turns a boolean value. The tactic fails if the sub- 
tactic that executes fails. 

The syntax tacticl?tactic2 denotes a tactic which 
executes tacticl; if this fails it executes tact&. 
This is a useful exception handling mechanism. 

Finally there is a repetition tactic. 

while condition do tactic 

Example. This is a tactic that will exhaustively 
find and combine all pairs of loops that may be 
merged within a program part p, which is passed 
as a parameter. 

Combine-Loops(p: progmm-part) = 
let Loop-l : program-part, 

Loop-2 : progmm-part, 
Combined-Loop : progmm-part 

in 
while exists-combinable-loops(p) 

(Find-Combinable-Loops(p) 
returns Loopl, Loop-Z; 

Merge-Loops(Loop-1, Loop-2) 
returns Combined-Loop; 

Simplify(Combined-Loop)) 

A tactic such as Combine-Loops may be incor- 
porated into another tactic or may be invoked 
directly by the user. 

2.2 The Replay Problem 

The replay problem is: given an original program 
P, its derivation history D, and a modified pro- 
gram P’, utilize. 

Parameter Correspondence. The execution 
of a tactic may cause a tactic variable to be 
bound to some code. Code bound to the 
same variable corresponds. 
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Structure correspondence is a weak syntatic- 
based notion used in the absence of stronger 
heuristic and semantic information generated by 
the other correspondence methods. It can be 
made more powerful by the adoption of program 
dependence graphs (13,141 as the underlying rep- 
resentation instead of annotated abstra.ct syntax 
trees. PDG’s incorporate data and control flow 
dependencies into the representation and factor 
out syntactic differences that do not contribute 
to semantic behavior. Using PDGs instead of 
ASTs would require a major revision to the KIDS 
system and a better treatment by PDGs of non- 
scalar variables. 

Parameter correspondence is a powerful notion, 
because it captures a semantic correspondence. 
Often when a tactic is applied it creates a code 
segment. Suppose that when the tactic is re- 
played a new code segment is created. With re- 
spect to the semantics encoded in the tactic both 
code segments play the same role and a corre- 
spondence is established. For example, a divide- 
and-conquer algorithm design tactic will generate 
identifiable code components such as code1 for the 
base case; code for dividing the problem into sub- 
problems, etc. Parameter correspondence would 
identify, say, code for the base case in each deriva- 
tion as corresponding. 

Our replay algorithm maintains a binary rela- 
tion called the correspondence relation. The first 
and second components of the relation are nodes 
of the AST taken from the derivation execution 
trace of D and D’ respectively. Intuitively, a pair 
is in the correspondence relation if there is some 
evidence that the two pieces of abstract syntax 
represent code playing the same role in interme- 
diate versions of P and P’. 

The correspondence relation is initialized as fol- 
lows. The language that P and P’ are written in 
is a single-assignment functional langua.ge. It has 
a binding construct, known as let*, and iteration 
construct for*. These constructs introduce local 
names and expressions defining the value denoted 
by name. A heuristic of name equivalence is im- 
plemented by initializing the correspondence re- 
lation to include pairs of AST nodes from P and 
P’ that define the same variable name within cor- 

responding program scopes. As replay proceeds 
the correspondence relation will be updated. 

Replay proceeds by re-executing each step of the 
execution trace D, starting with P’ instead of P, 
and using the correspondence relation to substi- 
tute actual parameters from P’ and its deriva- 
tives for values from P. How the step is replayed 
is described by a case analysis based on the type 
of the tactic. The tactic may be a primitive tac- 
tic, an abstraction tactic, an repetition tactic, a 
conditional tactic, etc. 

If the step to be replayed is the execution 
of a primitive tactic, pt(pl, . . . ,pm) returns 
id* , . . .id, then the tactic pt is invoked. Actual 
parameters must be supplied for pr , . . . , p,. If a 
pa.rameter is a tactic variable, its current value 
is used. If it is a node in the AST for P, call it 
B, then a corresponding node in P’ is obtained 
as follows: First the correspondence relation is 
checked. If B is paired with a corresponding node 
B’ then use B’ as the actual parameter. Other- 
wise starting at B traverse up the AST to the first 
node A for which A appears in the correspon- 
dence relation paired with some node A’, record- 
ing the labels on the edges traversed. If there is 
no such A then stop at the root. Then starting at 
A’ or the root of P’, move down the AST follow- 
ing the same la,bels in reverse order to arrive at 
a node B’. Use B’ as the value of the a.ctual pa- 
rameter corresponding to B. An example is given 
in Figure 1. If the paths do not correspond then 
replay fails on that step and manual intervention 
is necessa.ry. This heuristic of using path cor- 
respondence implements the structure heuristic. 
It recognizes that designed artifacts have compo- 
nent structure and substructure. In other words, 
components are recursively divided into subcom- 
ponents, and this pa.rts hierarchy can be used to 
find corresponding components. 

With all its parameters instantiated the primitive 
tactic is applied. If it fails, replay has failed on 
that step and the user is informed. Otherwise the 
tactic may return values to tactic variables with 
the returns clause. Parameter correspondence is 
implemented by augmenting the correspondence 
relation with pairs of AST nodes that were re- 
turned as the values of the same tactic variable 
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OrigiMl ProgrWfl Modified Program 

Figure 1: Establishing a Correspondence 

in the original and replayed derivation. Further- 
more, if any new variables were introduced by the 
tactic, the nodes representing those variables are 
made to correspond. 

Other tactics are handled similarly with the ex- 
ception of conditional and repetition. Suppose 
a conditional tactic is executed and in the orig- 
inal derivation the condition evaluates to true 
and the then branch is executed. If the con- 
dition during replay evaluates to false the else 
branch is executed with the correspondence rela- 
tion used to instantiate parameters as described 
above. The correspondence relation will not be 
updated when executing the else branch. Upon 
conclusion of the else branch, normal replay 
continues with the step following the conditional. 
A similar strategy is applied to repetitions. 

2.3 An Initial Implementation 

In our current implementation, we have not im- 
plemented a tactic language so that each tactic is 
primitive. This means that parameter correspon- 

dence cannot be used, since derivation structur- 
ing information is not present. However the im- 
plementation follows the described mechanism in 
all other respects. We have successfully used the 
replay mechanism on a number of examples. The 
results are described in the next section. 

Experience using our system has suggested many 
features that would make a replay system user- 
friendly. 

Viewing. Currently the system displays a win- 
dow showing all the derivation steps. The 
user can mouse on any step and display the 
program as it appears prior to the execu- 
tion of the step. The user may initiate a 
new derivation path from that step and the 
resulting tree of derivations is displayed. A 
desired feature is the ability to have more se- 
lected views, especially when the tactic lan- 
guage is implemented. For example we may 
wish to see an “executive” view that only 
shows the top-level development steps. A 
user may wish to explode a derivation step 
to see its sub-tactics. A user may wish to 
only see tactics that succeeded; or tactics 
relevant to a specified part of the program. 

Editing. Prior to replay the user may wish to 
make edit changes to the derivation, antici- 
pating where replay may fail. For example 
a sequence of transformations that applied 
to some program part may be abstracted 
and reapplied to a newly introduced object. 
Or the user may wish to edit the derivation 
and reapply it to the same specification to 
quickly generate a new implementation. 

Debugging. R.eplay is the reexecution of a “pro- 
cess program.” Th us we can imagine a set 
of debugging tools that are entered at break- 
points or when the replay mechanism fails. 
The debugger will allow tactic variables to 
be examined or changed, examine frames of 
tactic invocation, and perform other activi- 
ties usually provided by a debugger. 
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3 Results 

We have used the replay mechanism on a sim- 
ple example of computing basic statistics such 
as the mean, variance, and frequency. :Figure 2 
shows the initial specification. An explanation 
of the operators appearing in the prog:ram can 
be found in [5]. Figure 3 shows the development 
just prior to data structure selection. Each of the 
high-level operators such as reduce has been re- 
fined into loops, and these loops have been fused 
together so that a single pass is made over the 
input, and so no intermediate expressions are re- 
quired. The efficiency of the computation of the 
map freq has been speeded up asymptotically by 
iterator inversion. Data structure selection will 
choose an array implementation for freq and the 
input sequence. 

Next we modify the program by changing, the def- 
inition of freq to yield histogram data, in which 

ranges of data values are counted, and by the 
inclusion of the computation of the maximum 
value. Figure 4 shows the modified program. Fig- 
ure 5 shows the result of replay. 

Even though the definition of freq was changed 
the original development was successfully ap- 
plied. The other development steps, that were 
independent of the change, were also replayed. 
Finally Figure 6, shows additional development 
steps needed to incorporate the computation of 
the maximum value into the main loop of the 
program. 

A second, more involved example is based on 
a scheduling problem in which precedence con- 
strained jobs are scheduled on a uni-processor 
system (only one job may be scheduled at a time). 
In [5] we outlined this complex derivation which 
requires over 40 steps. We modified the specifi- 
cation to solve the problem of multi-processing 
scheduling and were able to replay successfully 
all of the steps of the derivation. 

Figure 2: The Initial Specification 
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Figure 3: The Implementation of the Original Specification 

Figure 4: The Modified Specification 
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Because of the existence of a large existing base 
of software there is work on recovery of design 
knowledge from code. In [2] he emphasizes the 
existence of semantic clues in documenta.tion and 
variable names that will aid in design recovery. 
We have adopted in our use of name correspon- 
dence this idea. Examples of work on design re- 
covery can be found in [35, 33, 161. 

Our tactic language is simi1a.r to [34, 181. A richer 
more theoretical approach is being pursued by 
[29, 151 using the Deva langua.ge. 

Closer to the spirit of the work reported here is 
work done at Rutgers University. Their work is 
couched in a transformational framework. Two 
domains are addressed: circuit designs [22] and 
heuristic search algorithms [24, 231. 

4 Related Work 

The literature on software reuse is very extensive, 
but most of it deals with component reuse, i.e. 
the reuse of subroutines. A collection of papers, 
edited by Biggerstaff and Perlis [3,4] emphasizes 
genemtiue systems, such as ours which offer de- 
sign reuse and the promise greater productivity 
improvements in the long run. Many of the ex- 
isting transformational systems are described in 
the collection. This is an excellent survey of the 
field. See also [19] for a perspective on the reuse 
of design plans. 

There is also an extensive Artificial Intelligence 
literature on analogy and machine learning. R.ep- 
resentative of work of this kind is [7]. 

5 Conclusions 

Initial experiments with the replay system has 
been encouraging. Furthermore the tactic ap- 
proach appears to be a sound and useful basis for 
making transformation systems productive vehi- 
cles for formal software development activities. 
While the varied use of analogy in its full gen- 
erality is not captured in our work the ability 

to support evolutionary development a.nd main- 
tenance appears feasible. Without such a mech- 
anism intcra.ctive formal development of prgrams 
would be impractical. 
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